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It is very common in scientific applications to
have to compute the derivative of a function spec-
ified by data. Particularly in the case of experi-
mental data, substantial noise or imprecision may
be present. Straightforward techniques for nu-
merically calculating derivatives will amplify this
noise, often so much that the result is useless. We
propose a new algorithm that can give accurate
results even in the presence of a large amount of
noise. This approach also has the benefit of not
forcing the result to be continuous, which allows
for the detection of corners or edges in the data.

The most common approach to computing
derivatives is finite differencing. At its simplest,
this is just subtracting each data point from the
one following it, and dividing by the difference
between them. So, for a functionf defined at data
points 0= x1,x2, . . . ,xN = L, one computes

f ′(xi)∼
f (xi+1)− f (xi)

xi+1−xi
. (1)

This is just the slope of the line joining two adja-
cent data points. The name “finite differencing”
distinguishes this from “infinitesimal differenc-
ing:” the value of f ′(xi) can be thought of as the
right-side of (1) for xi+1 “infinitesimally close” to
xi . Since we only have finitely many data points,
(1) is about as good as we can do.

To see why this fails for noisy data, look at the
function in Figure1(a). Although there are trends
in the data that are clear to the eye, slopes of ad-
jacent points fluctuate wildly, as in Figure1(b).

If the problem is the noise in the data, why not
denoise the data first? There are many denoising
algorithms. None of them are perfect. This means
that some noise or inaccuracy can be expected to
remain in the data. The differentiation process
will still amplify this noise, giving an unsatisfac-
tory result. See Figure2, in which total-variation
regularization (see below) is used to denoise the

image before computing the derivative with finite
differencing.

The alternative we propose is toregularizethe
differentiation process itself. We constrain the
possible outcomes in a way which guarantees that
the resulting derivative will not be noisy. The way
we do this is by requiring that the derivativeu be
the minimizer of the following functional:

F(u) = α
∫ L

0
|u′|+

∫ L

0
|Au− f |2. (2)

Here, A is the operator of antidifferentiation:
Au(x) =

∫ x
0 u. The purpose of the second term of

(2) is to make sure that what we are computing is
consistent with the function we are given: the an-
tiderivative ofu should not stray too far fromf .
The first term is thetotal variation of u, which
measures the total of all the ups and downs in
u. Keeping this term small ensures that the re-
sult will not be noisy, as noise has a very large
total variation. The parameterα controls the rel-
ative importance of the two terms. Ifα is chosen
correctly, the result will be a derivativeu that is as
“regular” as possible, while havingAu be within
the noise level off .

Total-variation regularization has been used in
other contexts. An example is image denoising,
where a two-dimensional analog of (2) is used,
but withAu replaced byu [1].

Other types of regularizations have been ap-
plied to the differentiation process. The first was
proposed by Cullum [2]. In her approach,

∫
|u′|2

is used in place of the total variation term in (2).
The effect of this regularization, as well as oth-
ers proposed since, is to force the resultingu to
be continuous. This is because

∫
|u′|2 is infinite

if u is discontinuous. On the other hand, the to-
tal variation ofu is unaffected by discontinuities.
It only measures changes inu, whether sharp or
gradual. Thus, total-variation regularization has
the advantage of being able to accurately compute
derivatives that are discontinuous.

Figure 3 shows the result of using total-
variation regularization to differentiate the func-
tion in Figure1(a). The general shape is cap-
tured almost perfectly: two constant portions with
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(a)

(b)

A noisy function (a) and its derivative (b) com-
puted by finite differencing. The noise is amplified
to the point of uselessness.

a sharp jump in the middle. Ideally, the values
would be±1; the jump size is a little too small,
as that reduces the total variation. Methods exist
for correcting such artifacts; implementing them
is the subject of current work.
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